Arsenic: A Cause of Cardiometabolic Syndromes
Abstract
Background: Arsenic is an abundant toxic metal on earth. It is considered as major culprit of health for millions of people worldwide. The International Agency for Research on Cancer ranked arsenic as Group 1 carcinogenic agent. Arsenic ranked on top of the list of toxic substance according to The Agency for Toxic Substances and Disease Registry. The major source of toxicity of arsenic is via drinking water. The prevalence of arsenic- mediated toxicities has drastically increased in Asian population causing serious cardiovascular issues in animal and man from past few years.
Objectives: The objective of the present study is to identify major pathological biomarkers and their possible mechanism in Arsenic-induced cardiometabolic syndrome.
Methodology: The present review summarizes the data and literature taken from previously done studies from research gate, science direct, PubMed, PubMed Central, Medline, and some other scientific databases emphasizing the role of Arsenic in cardiometabolic syndrome. The results obtained through this database were assembled, composed, critically elucidated and presented in explanatory and tabular form.
Results: The major pathological target of Arsenic is antioxidant defense system and an increase in Reactive oxygen Species reduces Nitric oxide production, reduction in vascular permeability, increase adhesion and production of inflammatory mediators (IL-6, TNF-α,), TCs, TGs, LDL-C, lipid peroxidation, β-cells dysfunction. The persistent accumulation and generation of these pathological biomarkers in the blood vessels can induce hyperlipidemias, dyslipidemias, atherosclerosis, hypertension, and diabetes.
Conclusion: There arises a need to propose natural antioxidant with minimum side effects in the treatment of CMTs
References
The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem.Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA
Environ Health Perspect. 2013 Mar; 121(3):295-302.
Kumar, M., Rahman, M. M., Ramanathan, A., & Naidu, R. (2016). Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Science of the Total Environment, 539, 125-134.
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60-72.
Rocha-Melogno, L., Yoo, R., Broesicke, O., Kallergis, A., Garcia, J., Herbas, E., . . . Beard, V. (2019). Rapid drinking water safety estimation in cities: Piloting a globally scalable method in Cochabamba, Bolivia. Science of the Total Environment, 654, 1132-1145.
Aziz, Z., Bostick, B., Zheng, Y., Huq, M., Rahman, M., Ahmed, K., & Van Geen, A. (2017). Evidence of decoupling between arsenic and phosphate in shallow groundwater of Bangladesh and potential implications. Applied geochemistry, 77, 167-177.
Iyer, S., Sengupta, C., & Velumani, A. (2016). Blood arsenic: pan-India prevalence. Clinica Chimica Acta, 455, 99-101.
Sanjrani, M., Mek, T., Sanjrani, N., Leghari, S., Moryani, H., & Shabnam, A. (2017). Current situation of aqueous arsenic contamination in Pakistan, focused on Sindh and Punjab Province, Pakistan: A review. J. Pollut. Eff. Cont, 5, 207.
Zhang, L., Qin, X., Tang, J., Liu, W., & Yang, H. (2017). Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China. Applied geochemistry, 77, 80-88.
Tantry, B. A., Taher, I., Shrivastava, D., & Nabi, M. (2015). Arsenite-oxidizing bacteria isolated from arsenic contaminated surface and ground water of Uttar Pradesh, India. African Journal of Microbiology Research, 9(48), 2320-2327.
Smedley, P., Nicolli, H., Macdonald, D., Barros, A., & Tullio, J. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied geochemistry, 17(3), 259-284.
Ayotte, J. D., Medalie, L., Qi, S. L., Backer, L. C., & Nolan, B. T. (2017). Estimating the high-arsenic domestic-well population in the conterminous United States. Environmental science & technology, 51(21), 12443-12454.
Welch, A. H., Westjohn, D., Helsel, D. R., & Wanty, R. B. (2000). Arsenic in ground water of the United States: occurrence and geochemistry. Groundwater, 38(4), 589-604.
Ullah, R., Malik, R. N., & Qadir, A. (2009). Assessment of groundwater contamination in an industrial city, Sialkot, Pakistan. African Journal of Environmental Science and Technology, 3(12)
Waseem, A., Arshad, J., Iqbal, F., Sajjad, A., Mehmood, Z., & Murtaza, G. (2014). Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables. BioMed research international, 2014.
Podgorski, J. E., Eqani, S. A. M. A. S., Khanam, T., Ullah, R., Shen, H., & Berg, M. (2017). Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Science advances, 3(8), e1700935.
Tariq, J., Ashraf, M., Jaffar, M., & Afzal, M. (1996). Pollution status of the Indus River, Pakistan, through heavy metal and macronutrient contents of fish, sediment and water. Water research, 30(6), 1337-1344.
Balakrishnan, P., Jones, M., Vaidya, D., Tellez-Plaza, M., Post, W., Kaufman, J., . . . Goessler, W. (2018). Ethnic, geographic, and genetic differences in arsenic metabolism at low arsenic exposure: A preliminary analysis in the multi-ethnic study of atherosclerosis (mesa). International journal of environmental research and public health, 15(6), 1179.
Lemaire, M., Silva, L. F. N., Lemarié, C. A., Bolt, A. M., Molina, M. F., Krohn, R. M., . . . Mann, K. K. (2015). Arsenic exposure increases monocyte adhesion to the vascular endothelium, a pro-atherogenic mechanism. PloS one, 10(9), e0136592.
Yang, H., Mao, G., Zhang, H., Zhang, C., Qiu, W., & Guo, X. (2014). Association between dyslipidemia and 8-OHdG/Cr among a population exposed to chronic arsenic. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi, 35(7), 802-805.
Lee, M.-Y., Jung, B.-I., Chung, S.-M., Bae, O.-N., Lee, J.-Y., Park, J.-D., . . . Chung, J.-H. (2003). Arsenic-induced dysfunction in relaxation of blood vessels. Environmental health perspectives, 111(4), 513-517.
Tyler, C. R., & Allan, A. M. (2014). The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Current environmental health reports, 1(2), 132-147.
Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental toxicology and pharmacology, 40(3), 828-846.
Chen, Y., Graziano, J. H., Parvez, F., Liu, M., Slavkovich, V., Kalra, T., . . . Rakibuz-Zaman, M. (2011). Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. Bmj, 342, d2431.
Navas-Acien, A., Sharrett, A. R., Silbergeld, E. K., Schwartz, B. S., Nachman, K. E., Burke, T. A., & Guallar, E. (2005). Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. American journal of epidemiology, 162(11), 1037-1049.
Physiology of the endothelium H. F. Galley and N. R. Webster* Academic Unit of Anesthesia & Intensive Care, School of Medicine, University of Aberdeen AB25 2ZD, Scotland UK
Behringer, E. J. (2017). Calcium and electrical signaling in arterial endothelial tubes: New insights into cellular physiology and cardiovascular function. Microcirculation, 24(3), e12328.
costa, E. D., Rezende, B. A., Cortes, S. F., & Lemos, V. S. (2016). Neuronal nitric oxide synthase in vascular physiology and diseases. Frontiers in physiology, 7, 206.
Gimbrone Jr, M. A., & García-Cardeña, G. (2016). Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation research, 118(4), 620-636.
Zhao, Y., Vanhoutte, P. M., & Leung, S. W. (2015). Vascular nitric oxide: Beyond eNOS. Journal of pharmacological sciences, 129(2), 83-94
Stirban, A. (2014). Microvascular dysfunction in the context of diabetic neuropathy. Current diabetes reports, 14(11), 541
Konukoglu, D., & Uzun, H. (2016). Endothelial dysfunction and hypertension. In Hypertension: from basic research to clinical practice (pp. 511-540): Springer
Jyoti, U., Kansal, S. K., Kumar, P., & Goyal, S. (2016). Possible vasculoprotective role of linagliptin against sodium arsenite-induced vascular endothelial dysfunction. Naunyn-Schmiedeberg's archives of pharmacology, 389(2), 167-175.
Guo, X., Fu, X., Liu, X., Wang, J., Li, Z., Gao, L., . . . Zhang, W. (2018). Role of Pigment Epithelium-Derived Factor in Arsenic-Induced Vascular Endothelial Dysfunction in a Rat Model. Biological trace element research, 1-9.
Waghe, P., Sarath, T. S., Gupta, P., Kutty, H. S., Kandasamy, K., Mishra, S. K., & Sarkar, S. N. (2014). Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats. Biological trace element research, 162(1-3), 234-241.
Kesavan, M., Sarath, T. S., Kannan, K., Suresh, S., Gupta, P., Vijayakaran, K., . . . Sarkar, S. N. (2014). Atorvastatin restores arsenic-induced vascular dysfunction in rats: modulation of nitric oxide signaling and inflammatory mediators. Toxicology and applied pharmacology, 280(1), 107-116.
Sarath, T. S., Waghe, P., Gupta, P., Choudhury, S., Kannan, K., Pillai, A. H., ... & Sarkar, S. N. (2014). Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats. Toxicology and applied pharmacology, 280(3), 443-454.
Yang, H. T., Chou, H. J., Han, B. C., & Huang, S. Y. (2007). Lifelong inorganic arsenic compounds consumption affected blood pressure in rats. Food and Chemical Toxicology, 45(12), 2479-2487.
Balakumar, P., & Kaur, J. (2009). Arsenic exposure and cardiovascular disorders: an overview. Cardiovascular toxicology, 9(4), 169-176.
Paul, D. S., Hernández-Zavala, A., Walton, F. S., Adair, B. M., Dědina, J., Matoušek, T., & Stýblo, M. (2007). Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: development of a mouse model for arsenic-induced diabetes. Toxicology and applied pharmacology, 222(3), 305-314.
Díaz-Villaseñor, A., Burns, A. L., Hiriart, M., Cebrián, M. E., & Ostrosky-Wegman, P. (2007). Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus. Toxicology and applied pharmacology, 225(2), 123-133.
Lu, T. H., Su, C. C., Chen, Y. W., Yang, C. Y., Wu, C. C., Hung, D. Z., ... & Huang, C. F. (2011). Arsenic induces pancreatic β-cell apoptosis via the oxidative stress-regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signaling pathways. Toxicology letters, 201(1), 15-26.
Maull, E. A., Ahsan, H., Edwards, J., Longnecker, M. P., Navas-Acien, A., Pi, J., ... & Loomis, D. (2012). Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. Environmental health perspectives, 120(12), 1658-1670.
Kulshrestha, A., Jarouliya, U., Prasad, G. B. K. S., Flora, S. J. S., & Bisen, P. S. (2014). WJTM. World, 3(2), 96-111.
Tseng, C. H. (2004). The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicology and applied pharmacology, 197(2), 67-83.
Liu, S., Guo, X., Wu, B., Yu, H., Zhang, X., & Li, M. (2014). Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Scientific reports, 4, 6894